A simple strategy to improve the interfacial activity of true Janus gold nanoparticles: a shorter hydrophilic capping ligand.
نویسندگان
چکیده
Janus gold nanoparticles (JPs) of ∼4 nm-diameter half functionalized with 1-hexanethiol as a hydrophobic capping ligand exhibit significantly higher interfacial activity, reproducibility and rheological response when the other half is functionalized with 1,2-mercaptopropanediol (JPs-MPD) than with 2-(2-mercaptoethoxy)ethanol (JPs-MEE), both acting as hydrophilic capping ligands. The interfacial pressure measured by pendant drop tensiometry reaches 50 mN m(-1) and 35 mN m(-1) for the JPs-MPD at the water/air and water/decane interface, respectively. At the same area per particle, the JPs-MEE reveal significantly lower interfacial pressure: 15 mN m(-1) and 5 mN m(-1) at the water/air and water/decane interface, respectively. Interfacial dilatational rheology measurements also show an elastic shell behaviour at higher compression states for JPs-MPD while the JPs-MEE present near-zero elasticity. The enhanced interfacial activity of JPs-MPD is explained in terms of chemical and hydration differences between the MPD and MEE ligands, where MPD has a shorter hydrocarbon chain and twice as many hydroxyl terminal groups as MEE.
منابع مشابه
Soft Matter c 5 sm 01908 g A Q 1 Q 2 simple strategy to improve the interfacial activity of true Janus gold nanoparticles : a shorter hydrophilic capping ligand
Translation errors between word-processor files and typesetting systems can occur so the whole proof needs to be read. Please pay particular attention to: tabulated material; equations; numerical data; figures and graphics; and references. If you have not already indicated the corresponding author(s) please mark their name(s) with an asterisk. Please e-mail a list of corrections or the PDF with...
متن کاملInterfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents
Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometr...
متن کاملJanus Nanoparticles by Interfacial Engineering
The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials that may deviate vastly from those of their constituent atoms and bulk forms. In order to exploit these unprecedented materials properties for the fabrication of next-generation devices and circuitries, two key aspects that are intimately related to each other have t...
متن کاملJanus nanoparticles: reaction dynamics and NOESY characterization
Janus nanoparticles were prepared by taking advantage of interfacial ligand exchange reactions of hydrophobic hexanethiolate-protected gold nanoparticles with hydrophilic 2-(2-mercaptoethoxy)ethanol (MEA). A monolayer of the particles was first formed at the air–water interface by the Langmuir technique and then deposited onto a substrate surface by the Langmuir–Blodgett method. The particle mo...
متن کاملSymmetry breaking polymerization: one-pot synthesis of plasmonic hybrid Janus nanoparticles.
Asymmetric hybrid nanoparticles have many important applications in catalysis, nanomotion, sensing, and diagnosis, however ways to generate the asymmetric hybrid nanoparticles are quite limited and inefficient. Most current methods rely on interfacial adhesion and modification of already formed particles. In this article we report a one-pot, facile and scalable synthesis of anisotropic Au-polym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2016